
CSE 30321 – Computer Architecture I – Fall 2008
Review Session 2 Problems

September 9, 2008

Question 1:
Letʼs assume that we have a CPU that executes the following mix of instructions:

- 43% are ALU operations (i.e. adds, subtracts, etc.) that take 1 CC
- 21% are Load instructions (i.e. that bring data from memory to a register) that take 1 CC
- 12% are Store instructions (i.e. that write data in a register to memory) that take 2 CCs
- 24% are Jump instructions (i.e. that help to implement conditionals, etc.) that take 2 CCs

What happens if we implement 1 CC stores at the expense of a 15% slower clock?

Is this change a good idea?

- To answer, letʼs assume our instruction count does not change: (Call it P)
- Then, as stated in the problem, with 1 CC stores, the clock rate will increase by 15%

o Therefore Toriginal = T and T1CC Store = 1.15T

- Now, we need to calculate an original CPI and a new CPI:
o CPIoriginal = (0.43)(1) + (0.21)(1) + (0.12)(2) + (0.24)(2) = 1.36
o CPI1CC Store = (0.43)(1) + (0.21)(1) + (0.12)(1) + (0.24)(2) = 1.24

- Now we can calculate CPU times:
o Timeoriginal = P x 1.36 x T = 1.36(PT)
o Time1CC Store = P x 1.24 x 1.15T = 1.43(PT)

- New time / original time = 1.43 / 1.36 > 1
o Therefore the new time is slower – this is not a good improvement.

Question 2:
Assume that you have a machine that is evaluated with a suite of benchmarks that consists of 4
different types of instructions: ALU instructions, load instructions, store instructions, and branch
instructions. The frequency of each instruction type – as well as the number of clock cycles per
instruction – for this benchmark suite is shown in the table below:

To improve upon this base performance, the chipʼs design team has carefully considered a list of
potential design enhancements and has narrowed the list to 3. However, because the product needs to
go to fab in 9 months, there is only time to make 2 of them. The three enhancements are listed below:

(a) The team can change the adder design from a conventional ripple-carry adder to a Kogge-
Stone adder. The net effect of this design change is that the clock rate will increase from
180MHz to 200MHz as all instruction types need to leverage this resource during their lifetime.

(b) The team can add extra memory ports to the on-chip cache to improve the performance of
instructions that reference memory. Simulations say that this change will reduce the average
CPI for loads to 7.2 and will reduce the average CPI for stores to 6.6.

(c) The team can change the design of the multiply functional unit. Multiply instructions account for
23% of all ALU instructions. Were this change to be instituted, the average CPI of a multiply
instruction would be reduced from 9 to 6.

Part A:
Which of these 2 options should be chosen to ensure the greatest performance improvement?

We can answer this question by calculating execution times – a base case and then the effects of
Options AB, AC, and BC.

- Recall that the formula for CPU time is:
o CPU Time = (instructions/program) x (clock cycles/instruction) x (seconds/clock cycle)

- Also, let the number of instructions = i

Base Time:
CPIbase = 6.644
CPU Timebase = (i) x [(0.47*6.7) + (0.19*7.9) + (0.2*5) + (0.14*7.1)] x (5.56x10-9 s) = (3.69x10-8)i

Option A & B:

- To evaluate these choices, we need to calculate a new CPI and also change the clock cycle
time.

CPIAB = 6.441
CPU TimeAB = (i) x [(0.47*6.7) + (0.19*7.2) + (0.2*5) + (0.14*6.6)] x (5.0x10-9 s) = (3.22x10-8)i

Type Percentage Average CPI
ALU 47% 6.7
Load 19% 7.9

Branch 20% 5.0
Store 14% 7.1

Option A & C:

- To evaluate these choices, we need to calculate a new CPI and also change the clock cycle
time.

For option C, we need to determine a new average CPI for the ALU type instructions. This is done as
follows:

Old ALU CPI: (0.77)(non-multiply) + (0.23)(multiply) = 6.7
New ALU CPI: (0.77)(non-multiply) + (0.23)(multiply) = x

Because we know that ʻmultiplyʼ = 9 CCs, we can solve for ʻ(0.77)(non-multiply)ʼ. This value =

4.63.
We can then use 4.63 to solve for x. Thus, x = 4.63 + (0.23)(6) = 6.01

CPIAC = 6.320
CPU TimeAC = (i) x [(0.47*6.01) + (0.19*7.9) + (0.2*5) + (0.14*7.1)] x (5.0x10-9 s) = (3.16x10-8)i

Option B & C:

- To evaluate these choices, we need to calculate a new CPI and also change the clock cycle
time back to the original clock cycle time.

CPIBC = 6.117
CPU TimeBC = (i) x [(0.47*6.01) + (0.19*7.2) + (0.2*5) + (0.14*6.6)] x (5.56x10-9 s) = (3.4x10-8)i

Thus, after evaluating all of these choices, we know the following:

Clearly, using options A and C allow for the greatest performance improvements.

Part B:
What is the new average CPI?

CPIAC = [(0.47*6.01) + (0.19*7.9) + (0.2*5) + (0.14*7.1)] = 6.32

Part C:
What performance speedup do we see?

Speedup = (3.69x10-8)i / (3.16x10-8)i = 1.167
 = 16.7% speedup

Option Execution
Time

Base (3.69x10-8)i
A,B (3.22x10-8)i
A,C (3.16x10-8)i
B,C (3.40x10-8)i

Part D:
Why do you think that the combination you found to perform the best actually performs best?

Options A and C are best because (i) A leverages the option that impacts every instruction and (ii) while
the overall percentage of multiply instructions enhanced is only 10.8% (versus option B which effects a
greater percentage of instructions), the performance of option C still has a significant impact in terms of
percentage and a greater impact in terms of the average number of CC per instruction saved.

